Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.613
Filter
3.
Med Arch ; 78(2): 112-116, 2024.
Article in English | MEDLINE | ID: mdl-38566872

ABSTRACT

Background: Respiratory distress syndrome (RDS) is a major cause of morbidity and mortality in preterm infants. Early nasal CPAP and selective administration of surfactant via the endotracheal tube are widely used in the treatment of RDS in preterm infants. Objective: The aim of this study was to compare the need for intubation and mechanical ventilation after surfactant delivery between LISA-treated and INSURE-treated premature infants with respiratory distress syndrome (RDS). Methods: Retrospective registry-based cohort study enrolled 36 newborns admitted to the neonatal intensive care unit of the "Santa Maria" Hospital of Terni between 2016 and 2023. As a primary outcome, we followed the need for intubation and mechanical ventilation within 72 hours of life, while the secondary outcomes were major neonatal morbidities and death before discharge. Results: The LISA group and the INSURE group included 13 and 23 newborns respectively. Demographic features showed no significant differences between the two groups. The need for mechanical ventilation in the first 72 hours of life was similar in both groups (p >0.99). There were no significant differences in morbidities. Conclusion: LISA and INSURE are equally effective modalities for surfactant administration for the treatment of RDS in preterm infants.


Subject(s)
Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Infant, Newborn , Humans , Infant, Premature , Surface-Active Agents/therapeutic use , Retrospective Studies , Cohort Studies , Pulmonary Surfactants/therapeutic use , Respiration, Artificial/methods , Respiratory Distress Syndrome, Newborn/drug therapy , Lipoproteins
4.
BMC Pediatr ; 24(1): 262, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643076

ABSTRACT

BACKGROUND: Respiratory distress syndrome (RDS) is one of the most important and common disorders among premature infants. OBJECTIVE: This study aimed to compare the effect of the combination of surfactant and budesonide with surfactant alone on Bronchopulmonary dysplasia (BPD) and mortality rate among premature infants with RDS. METHOD: An outcome assessor-blind randomized clinical trial was conducted on 134 premature infants with RDS who were born in Ayatollah Mousavi Hospital, Zanjan, Iran in 2021. The covariate adaptive randomization method was utilized to allocate participants into two groups (surfactant alone and a combination of surfactant and budesonide). The primary outcomes were BPD and Mortality rate from admission to hospital discharge. The data in this study were analyzed using SPSS software version 18. RESULTS: Overall the comparison of mortality rate and BPD between the two groups did not show a significant difference(p > 0.05). The subgroup results showed that administering surfactant with budesonide to infants under 30 weeks of age significantly reduced the number of deaths compared to using surfactant alone (5 vs. 17). Similar positive effects were observed for the occurrence of Pulmonary Hemorrhage, the need for a second dose of surfactant, oxygen index, mean blood pressure and mean arterial pressure (MAP) in infants under 34 weeks of age compared to more than 34 weeks (p < 0.05). CONCLUSION: These findings suggest that the combination therapy of surfactant and budesonide may be beneficial, particularly in preterm infants with less than 34 weeks gestational age and 1500 birth weight. However, further studies with larger sample sizes and longer follow-up periods are needed to confirm these results and assess long-term outcomes. TRIAL REGISTRATION: The study was registered at the Iranian Registry of Clinical Trials website under the code IRCT20201222049802N1. https://en.irct.ir/user/trial/48117/view . REGISTRATION DATE: 28/02/2021. PUBLIC REPOSITORY: DATA SET: This research data set link is displayed on the Zanjan-Iran Medical Sciences website: https://repository.zums.ac.ir/cgi/users/login? target=https%3 A%2 F/repository.zums.ac.ir/id/eprint .


Subject(s)
Bronchopulmonary Dysplasia , Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Infant , Infant, Newborn , Humans , Infant, Premature , Budesonide/therapeutic use , Surface-Active Agents/therapeutic use , Bronchopulmonary Dysplasia/drug therapy , Iran , Single-Blind Method , Respiration, Artificial/methods , Respiratory Distress Syndrome, Newborn/therapy , Pulmonary Surfactants/therapeutic use , Lipoproteins
5.
Eur J Med Res ; 29(1): 255, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659054

ABSTRACT

INTRODUCTION: Amidst the routine utilization of protocolized sedation in ventilated ICU patients, existing management guidelines exhibit a lack of unanimous recommendations for its widespread adoption. This study endeavors to comprehensively assess the effectiveness and safety of protocolized sedation in critically ill ventilated patients. OBJECTIVE: The primary objective of this study was to systematically review and conduct a meta-analysis of clinical trials comparing protocolized sedation with standard management in critically ill ventilated patients. Key outcomes under scrutiny include ICU and hospital mortality, ventilation days, duration of ICU stay, and incidents of self-extubation. The evaluation incorporates the Risk of Bias 2 (RoB2) tool to assess the quality of included studies. Data analysis utilizes a random-effects model for relative risk (RR) and mean differences. Subgroup analysis categorizes sedation protocols into algorithmic or daily interruption, addressing potential heterogeneity. Additionally, a GRADE evaluation is performed to ascertain the overall certainty of the evidence. RESULTS: From an initial pool of 1504 records, 10 studies met the inclusion criteria. Protocolized sedation demonstrated a reduced RR for mortality (RR: 0.80, 95% CI 0.68-0.93, p < 0.01, I2 = 0%) and a decrease in ventilation days (mean difference: - 1.12, 95% CI - 2.11 to - 0.14, p = 0.03, I2 = 84%). Furthermore, there was a notable reduction in ICU stay (mean difference: - 2.24, 95% CI - 3.59 to - 0.89, p < 0.01, I2 = 81%). However, incidents of self-extubation did not exhibit a significant difference (RR: 1.20, 95% CI 0.49-2.94, p = 0.69, I2 = 35%). Subgroup analyses effectively eliminated heterogeneity (I2 = 0%), and the GRADE evaluation yielded moderate results for mortality, ventilation days, and ICU duration. CONCLUSION: Protocolized sedation, whether implemented algorithmically or through daily interruption, emerges as a safe and effective approach when compared to standard management in ventilated ICU patients. The findings from this study contribute valuable insights to inform evidence-based practices in sedation management for this critical patient population.


Subject(s)
Hypnotics and Sedatives , Intensive Care Units , Respiration, Artificial , Humans , Respiration, Artificial/methods , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/therapeutic use , Critical Care/methods , Critical Care/standards , Critical Illness/mortality , Critical Illness/therapy , Conscious Sedation/methods , Hospital Mortality , Length of Stay , Clinical Protocols
6.
Crit Care ; 28(1): 132, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649920

ABSTRACT

BACKGROUND: Rapidly improving acute respiratory distress syndrome (RIARDS) is an increasingly appreciated subgroup of ARDS in which hypoxemia improves within 24 h after initiation of mechanical ventilation. Detailed clinical and biological features of RIARDS have not been clearly defined, and it is unknown whether RIARDS is associated with the hypoinflammatory or hyperinflammatory phenotype of ARDS. The purpose of this study was to define the clinical and biological features of RIARDS and its association with inflammatory subphenotypes. METHODS: We analyzed data from 215 patients who met Berlin criteria for ARDS (endotracheally intubated) and were enrolled in a prospective observational cohort conducted at two sites, one tertiary care center and one urban safety net hospital. RIARDS was defined according to previous studies as improvement of hypoxemia defined as (i) PaO2:FiO2 > 300 or (ii) SpO2: FiO2 > 315 on the day following diagnosis of ARDS (day 2) or (iii) unassisted breathing by day 2 and for the next 48 h (defined as absence of endotracheal intubation on day 2 through day 4). Plasma biomarkers were measured on samples collected on the day of study enrollment, and ARDS phenotypes were allocated as previously described. RESULTS: RIARDS accounted for 21% of all ARDS participants. Patients with RIARDS had better clinical outcomes compared to those with persistent ARDS, with lower hospital mortality (13% vs. 57%; p value < 0.001) and more ICU-free days (median 24 vs. 0; p value < 0.001). Plasma levels of interleukin-6, interleukin-8, and plasminogen activator inhibitor-1 were significantly lower among patients with RIARDS. The hypoinflammatory phenotype of ARDS was more common among patients with RIARDS (78% vs. 51% in persistent ARDS; p value = 0.001). CONCLUSIONS: This study identifies a high prevalence of RIARDS in a multicenter observational cohort and confirms the more benign clinical course of these patients. We report the novel finding that RIARDS is characterized by lower concentrations of plasma biomarkers of inflammation compared to persistent ARDS, and that hypoinflammatory ARDS is more prevalent among patients with RIARDS. Identification and exclusion of RIARDS could potentially improve prognostic and predictive enrichment in clinical trials.


Subject(s)
Biomarkers , Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Prospective Studies , Aged , Biomarkers/blood , Biomarkers/analysis , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Adult , Cohort Studies , Hypoxia/blood
7.
Perfusion ; 39(1_suppl): 107S-114S, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651573

ABSTRACT

BACKGROUND: The impact of mechanical ventilation on the survival of patients supported with veno-venous extracorporeal membrane oxygenation (V-V ECMO) due to severe acute respiratory distress syndrome (ARDS) remains still a focus of research. METHODS: Recent guidelines, randomized trials, and registry data underscore the importance of lung-protective ventilation during respiratory and cardiac support on ECMO. RESULTS: This approach includes decreasing mechanical power delivery by reducing tidal volume and driving pressure as much as possible, using low or very low respiratory rate, and a personalized approach to positive-end expiratory pressure (PEEP) setting. Notably, the use of ECMO in awake and spontaneously breathing patients is increasing, especially as a bridging strategy to lung transplantation. During respiratory support in V-V ECMO, native lung function is of highest importance and adjustments of blood flow on ECMO, or ventilator settings significantly impact the gas exchange. These interactions are more complex in veno-arterial (V-A) ECMO configuration and cardiac support. The fraction on delivered oxygen in the sweep gas and sweep gas flow rate, blood flow per minute, and oxygenator efficiency have an impact on gas exchange on device side. On the patient side, native cardiac output, native lung function, carbon dioxide production (VCO2), and oxygen consumption (VO2) play a role. Avoiding pulmonary oedema includes left ventricle (LV) distension monitoring and prevention, pulse pressure >10 mm Hg and aortic valve opening assessment, higher PEEP adjustment, use of vasodilators, ECMO flow adjustment according to the ejection fraction, moderate use of inotropes, diuretics, or venting strategies as indicated and according to local expertise and resources. CONCLUSION: Understanding the physiological principles of gas exchange during cardiac support on femoro-femoral V-A ECMO configuration and the interactions with native gas exchange and haemodynamics are essential for the safe applications of these techniques in clinical practice. Proning during ECMO remains to be discussed until further data is available from prospective, randomized trials implementing individualized PEEP titration during proning.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiration, Artificial , Extracorporeal Membrane Oxygenation/methods , Extracorporeal Membrane Oxygenation/trends , Humans , Respiration, Artificial/methods , Respiration, Artificial/trends , Respiratory Distress Syndrome/therapy
8.
Zhonghua Yi Xue Za Zhi ; 104(15): 1242-1246, 2024 Apr 16.
Article in Chinese | MEDLINE | ID: mdl-38637163

ABSTRACT

Extracorporeal carbon dioxide removal (ECCO2R) is a respiratory support technique based on extra-pulmonary gas exchange, which can effectively remove carbon dioxide generated in-vivo, reducing the requirements of respiratory support from mechanical ventilation. With improvements in extracorporeal life support technologies and increasing clinical experience, ECCO2R has potential value in clinical application with acute respiratory distress syndrome (ARDS). This review article discusses the principles of ECCO2R, its relevant indications for ARDS, clinical evidence, existing issues, and future directions, aiming to provide more references for the application in ARDS.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Carbon Dioxide , Extracorporeal Circulation/methods , Respiratory Distress Syndrome/therapy , Respiration, Artificial/methods , Extracorporeal Membrane Oxygenation/methods
9.
Zhonghua Yi Xue Za Zhi ; 104(15): 1247-1252, 2024 Apr 16.
Article in Chinese | MEDLINE | ID: mdl-38637164

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common and critical clinical condition characterized by diffuse damage to the lung interstitium, alveoli, and increased permeability of pulmonary blood vessels. CT can be used to assess the imaging features, severity, and prediction of ARDS, but it requires patient transportation to the CT room and is only a static examination. Electrical impedance tomography (EIT) is an increasingly widely used monitoring tool in clinical applications in recent years. It enables continuous real-time assessment of lung ventilation distribution at the bedside and has high clinical value in optimizing mechanical ventilation parameters for critically ill patients. This article introduces the basic principles of EIT and how to better utilize EIT technology to guide mechanical ventilation treatment for ARDS patients.


Subject(s)
Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiration, Artificial/methods , Electric Impedance , Tomography/methods , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed/methods , Lung
10.
Med. intensiva (Madr., Ed. impr.) ; 48(4): 191-199, abr. 2024. tab, graf
Article in English | IBECS | ID: ibc-231954

ABSTRACT

Objective To establish a new machine learning-based method to adjust positive end-expiratory pressure (PEEP) using only already routinely measured data. Design Retrospective observational study. Setting Intensive care unit (ICU). Patients or participants 51811 mechanically ventilated patients in multiple ICUs in the USA (data from MIMIC-III and eICU databases). Interventions No interventions. Main variables of interest Success parameters of ventilation (arterial partial pressures of oxygen and carbon dioxide and respiratory system compliance). Results The multi-tasking neural network model performed significantly best for all target tasks in the primary test set. The model predicts arterial partial pressures of oxygen and carbon dioxide and respiratory system compliance about 45 min into the future with mean absolute percentage errors of about 21.7%, 10.0% and 15.8%, respectively. The proposed use of the model was demonstrated in case scenarios, where we simulated possible effects of PEEP adjustments for individual cases. Conclusions Our study implies that machine learning approach to PEEP titration is a promising new method which comes with no extra cost once the infrastructure is in place. Availability of databases with most recent ICU patient data is crucial for the refinement of prediction performance. (AU)


Objetivo Establecer un nuevo método basado en el aprendizaje automático para ajustar la presión positiva al final de la espiración (PEEP según sus siglas en inglés) utilizando únicamente datos ya obtenidos de forma rutinaria. Diseño Estudio retrospectivo de observación. Ámbito Unidad de cuidados intesivos (UCI) Pacientes o participantes 51811 pacientes ventilados mecánicamente en múltiples UCIs de EE.UU. (tomados de las bases de datos MIMIC-III y eICU). Intervenciones Sin intervenciones. Variables de interés principales Parametros de éxito de la ventilación (presiones parciales arteriales de oxígeno y dióxido de carbono y distensibilidad del sistema respiratorio). Resultados El modelo de red neuronal multitarea obtuvo los mejores resultados en todos los objetivos del conjunto de pruebas primario. El modelo predice las presiones parciales arteriales de oxígeno y dióxido de carbono así como la distensibilidad del sistema respiratorio con aproximadamente 45 minutos de anticipación, mostrando errores porcentuales absolutos medios de aproximadamente 21.7%, 10.0% y 15.8%, respectivamente. El uso propuesto del modelo se demostró en situaciones hipotéticas en las que se simularon los posibles efectos de los ajustes de PEEP para casos individuales. Conclusiones Nuestro estudio implica que el enfoque de aprendizaje automático para el ajuste de la PEEP es un método nuevo y prometedor que no supone ningún coste adicional una vez que se dispone de la infraestructura necesaria. La disponibilidad de bases de datos con información de pacientes de UCI más recientes es crucial para perfeccionar el rendimiento de la predicción. (AU)


Subject(s)
Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Machine Learning , Respiration, Artificial/instrumentation , Respiration, Artificial/methods , Intensive Care Units , Retrospective Studies
11.
Respir Care ; 69(4): 449-462, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538014

ABSTRACT

BACKGROUND: In recent years, mechanical power (MP) has emerged as an important concept that can significantly impact outcomes from mechanical ventilation. Several individual components of ventilatory support such as tidal volume (VT), breathing frequency, and PEEP have been shown to contribute to the extent of MP delivered from a mechanical ventilator to patients in respiratory distress/failure. The aim of this study was to identify which common individual setting of mechanical ventilation is more efficient in maintaining safe and protective levels of MP using different modes of ventilation in simulated subjects with ARDS. METHODS: We used an interactive mathematical model of ventilator output during volume control ventilation (VCV) with either constant inspiratory flow (VCV-CF) or descending ramp inspiratory flow, as well as pressure control ventilation (PCV). MP values were determined for simulated subjects with mild, moderate, and severe ARDS; and whenever MP > 17 J/min, VT, breathing frequency, or PEEP was manipulated independently to bring back MP to ≤ 17 J/min. Finally, the optimum VT-breathing frequency combinations for MP = 17 J/min were determined with all 3 modes of ventilation. RESULTS: VCV-CF always resulted in the lowest MPs while PCV resulted in highest MPs. Reductions in VT were the most efficient for maintaining safer and protective MP. At targeted MPs of 17 J/min and maximized minute ventilation, the optimum VT-breathing frequency combinations were 250-350 mL for VT and 32-35 breaths/min for breathing frequency in mild ARDS, 200-350 mL for VT and 34-40 breaths/min for breathing frequency in moderate ARDS, and 200-300 mL for VT and 37-45 breaths/min for breathing frequency for severe ARDS. CONCLUSIONS: VCV-CF resulted in the lowest MP. VT was the most efficient for maintaining safe and protective MP in a mathematical simulation of subjects with ARDS. In the context of maintaining low and safe MPs, ventilatory strategies with lower-than-normal VT and higher-than-normal breathing frequency will need to be implemented in patients with ARDS.


Subject(s)
Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiration, Artificial/methods , Ventilators, Mechanical , Lung , Tidal Volume , Respiratory Distress Syndrome/therapy
12.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 286-292, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38538358

ABSTRACT

OBJECTIVE: To investigate the effect of early pulmonary rehabilitation (PR) training on the improvement of respiratory function in patients with acute respiratory distress syndrome (ARDS) after weaning of invasive mechanical ventilation in the intensive care unit (ICU). METHODS: The retrospective cohort research method was used. The clinical information of adult patients with ARDS receiving invasive mechanical ventilation admitted to the ICU of Qingdao Municipal Hospital from January 2019 to March 2023 was collected. The patients were divided into a control group and an observation group according to off-line training program. The control group received traditional training after weaning, and the observation group received the early PR training after weaning. Other treatments and nursing were implemented according to the routine of the ICU. The scores of the short physical performance battery (SPPB) on day 3-day 6 of the weaning training, respiratory muscle strength, level of interleukin-6 (IL-6), number of aspirations of sputum after weaning, length of stay after weaning, rehospitalization rate within 6 months after discharge, and pulmonary function indicators at discharge and 3 months after discharge [peak expiratory flow (PEF), forced expiratory volume in one second/forced vital capacity ratio (FEV1/FVC), and vital capacity (VC)] of the two groups of patients were compared. The Kaplan-Meier survival curve was drawn to analyze the cumulative survival rate of patients 6 months after discharge. RESULTS: A total of 50 of which 25 cases received the traditional training after weaning, 25 cases received the early PR training after weaning. There was no significant difference in gender, age, acute physiology and chronic health evaluation II (APACHE II), oxygenation index upon admission, etiological diagnosis of ARDS upon admission, time of invasive ventilation, mode of invasive mechanical ventilation, pulmonary function indicators at discharge, and other baseline data of the two groups. The SPPB questionnaire scores and respiratory muscle strength in both groups were increased gradually with the extended offline training time, the serum level of IL-6 in both groups were descend gradually with the extended offline training time, especially in the observation group [SPPB questionnaire score in the observation group were 7.81±0.33, 8.72±0.53, 9.44±0.31, 10.57±0.50, while in the control group were 7.74±0.68, 8.73±0.37, 8.72±0.40, 9.33±0.26, effect of time: F = 192.532, P = 0.000, effect of intervention: F = 88.561, P = 0.000, interaction effect between intervention and time: F = 24.724, P = 0.000; respiratory muscle strength (mmHg, 1 mmHg≈0.133 kPa) in the observation group were 123.20±24.84, 137.00±26.47, 149.00±24.70, 155.40±29.37, while in the control group were 129.00±20.34, 126.00±24.01, 132.20±25.15, 138.60±36.67, effect of time: F = 5.926, P = 0.001, effect of intervention: F = 5.248, P = 0.031, interaction effect between intervention and time: F = 3.033, P = 0.043; serum level of IL-6 in the observation group were 80.05±6.81, 74.76±9.33, 63.66±10.19, 56.95±4.72, while in the control group were 80.18±7.21, 77.23±9.78, 71.79±10.40, 66.51±6.49, effect of time: F = 53.485, P = 0.000, effect of intervention: F = 22.942, P = 0.000, interaction effect between intervention and time: F = 3.266, P = 0.026]. Compared with the control group, the number of aspirations of sputum after weaning of patients in the observation group significantly decreased (number: 22.46±1.76 vs. 27.31±0.90), the length of ICU stay after weaning significantly became shorter (days: 6.93±0.95 vs. 8.52±2.21), and the rehospitalization rate within 6 months after discharge significantly decreased [20.00% (5/25) vs. 48.00% (12/25)]. There were significant differences. The pulmonary function indicators 3 months after discharge of two groups of patients significantly increased compared with those at discharge and those of the observation group were significantly higher than those of the control group [PEF (L/min): 430.20±95.18 vs. 370.00±108.44, FEV1/FVC ratio: 0.88±0.04 vs. 0.82±0.05, VC (L): 3.22±0.72 vs. 2.74±0.37, all P < 0.05]. The Kaplan-Meier survival curve showed that the cumulative survival rate of patients 6 months after discharge of patients in the observation group was significantly higher than that of patients in the control group [76.9% vs. 45.5%, hazard ratio (HR) = 0.344, P = 0.017]. CONCLUSIONS: Early PR training can significantly improve the respiratory function of patients with ARDS after weaning of invasive mechanical ventilation. Continuous active respiratory training after discharge can improve the respiratory function of patients and effectively decrease mortality.


Subject(s)
Respiration, Artificial , Respiratory Distress Syndrome , Adult , Humans , Respiration, Artificial/methods , Retrospective Studies , Interleukin-6 , Ventilator Weaning , Respiratory Distress Syndrome/therapy , Prognosis , Tidal Volume , Intensive Care Units
13.
Medicine (Baltimore) ; 103(12): e37500, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518051

ABSTRACT

Patients admitted to intensive care units (ICU) and receiving mechanical ventilation (MV) may experience ventilator-associated adverse events and have prolonged ICU length of stay (LOS). We conducted a survey on adult patients in the medical ICU requiring MV. Utilizing big data and artificial intelligence (AI)/machine learning, we developed a predictive model to determine the optimal timing for weaning success, defined as no reintubation within 48 hours. An interdisciplinary team integrated AI into our MV weaning protocol. The study was divided into 2 parts. The first part compared outcomes before AI (May 1 to Nov 30, 2019) and after AI (May 1 to Nov 30, 2020) implementation in the medical ICU. The second part took place during the COVID-19 pandemic, where patients were divided into control (without AI assistance) and intervention (with AI assistance) groups from Aug 1, 2022, to Apr 30, 2023, and we compared their short-term outcomes. In the first part of the study, the intervention group (with AI, n = 1107) showed a shorter mean MV time (144.3 hours vs 158.7 hours, P = .077), ICU LOS (8.3 days vs 8.8 days, P = .194), and hospital LOS (22.2 days vs 25.7 days, P = .001) compared to the pre-intervention group (without AI, n = 1298). In the second part of the study, the intervention group (with AI, n = 88) exhibited a shorter mean MV time (244.2 hours vs 426.0 hours, P = .011), ICU LOS (11.0 days vs 18.7 days, P = .001), and hospital LOS (23.5 days vs 40.4 days, P < .001) compared to the control group (without AI, n = 43). The integration of AI into the weaning protocol led to improvements in the quality and outcomes of MV patients.


Subject(s)
COVID-19 , Respiration, Artificial , Adult , Humans , Respiration, Artificial/methods , Ventilator Weaning/methods , Retrospective Studies , Artificial Intelligence , Pandemics , Intensive Care Units , Length of Stay
15.
Chin Med Sci J ; 39(1): 29-45, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38438278

ABSTRACT

Objective Different body positions can exert both positive and negative physiological effects on hemodynamics and respiration. This study aims to conduct a literature review and examine hemodynamic and respiratory alterations to different body positions.Methods The study protocol was registered with the International Prospective Registry of Systematic Reviews (register no. CRD42021291464). Two independent reviewers evaluated the methodological quality of all included studies using the Down and Black checklist, while the quality of evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations approach. The overall effects of different body positions were reported from random effects meta-analysis.Results Three studies with low risk of bias and ten with high risk of bias met the eligibility criteria. The supine resulted in the highest cardiac output compared to the 70 deg head-up tilt, sitting, and standing positions (very low- to moderate-quality evidences) and the lowest systemic vascular resistance compared to the 70 deg head-up tilt and standing positions (moderate-quality evidence). Additionally, the supine was associated with the highest total respiratory resistance compared to the 70 deg head-up tilt, left lateral, and standing positions (very low-to moderate-quality evidence) and higher alveolar ventilation than the prone (low-quality evidence).Conclusions The supine position has the most positive association with hemodynamic variables, resulting in the highest cardiac output and the lowest systemic vascular resistance. The upright positions (70 deg head-up tilt and standing positions) has the most positive association with the respiratory variables, resulting in the lowest total respiratory resistance.


Subject(s)
Hemodynamics , Patient Positioning , Adult , Humans , Patient Positioning/methods , Hemodynamics/physiology , Respiration , Respiration, Artificial/methods
16.
Comput Biol Med ; 173: 108349, 2024 May.
Article in English | MEDLINE | ID: mdl-38547660

ABSTRACT

BACKGROUND: Ventilator dyssynchrony (VD) can worsen lung injury and is challenging to detect and quantify due to the complex variability in the dyssynchronous breaths. While machine learning (ML) approaches are useful for automating VD detection from the ventilator waveform data, scalable severity quantification and its association with pathogenesis and ventilator mechanics remain challenging. OBJECTIVE: We develop a systematic framework to quantify pathophysiological features observed in ventilator waveform signals such that they can be used to create feature-based severity stratification of VD breaths. METHODS: A mathematical model was developed to represent the pressure and volume waveforms of individual breaths in a feature-based parametric form. Model estimates of respiratory effort strength were used to assess the severity of flow-limited (FL)-VD breaths compared to normal breaths. A total of 93,007 breath waveforms from 13 patients were analyzed. RESULTS: A novel model-defined continuous severity marker was developed and used to estimate breath phenotypes of FL-VD breaths. The phenotypes had a predictive accuracy of over 97% with respect to the previously developed ML-VD identification algorithm. To understand the incidence of FL-VD breaths and their association with the patient state, these phenotypes were further successfully correlated with ventilator-measured parameters and electronic health records. CONCLUSION: This work provides a computational pipeline to identify and quantify the severity of FL-VD breaths and paves the way for a large-scale study of VD causes and effects. This approach has direct application to clinical practice and in meaningful knowledge extraction from the ventilator waveform data.


Subject(s)
Lung Injury , Humans , Ventilators, Mechanical , Lung/physiology , Respiration, Artificial/methods
17.
Lung ; 202(2): 211-216, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472401

ABSTRACT

BACKGROUND: Weaning patients with COPD from mechanical ventilation (MV) presents a challenge, as literature on this topic is limited. This study compares PSV and T-piece during spontaneous breathing trials (SBT) in this specific population. METHODS: A search of PubMed, EMBASE, and Cochrane in September 2023 yielded four randomized controlled trials (RCTs) encompassing 560 patients. Among these, 287 (51%) used T-piece during SBTs. RESULTS: The PSV group demonstrated a significant improvement in the successful extubation rate compared to the T-piece (risk ratio [RR] 1.14; 95% confidence interval [CI] 1.03-1.26; p = 0.02). Otherwise, there was no statistically significant difference in the reintubation (RR 1.07; 95% CI 0.79-1.45; p = 0.67) or the ICU mortality rates (RR 0.99; 95% CI 0.63-1.55; p = 0.95). CONCLUSION: Although PSV in SBTs exhibits superior extubation success, consistent weaning protocols warrant further exploration through additional studies.


Subject(s)
Airway Extubation , Pulmonary Disease, Chronic Obstructive , Humans , Airway Extubation/methods , Randomized Controlled Trials as Topic , Ventilator Weaning/methods , Respiration, Artificial/methods , Pulmonary Disease, Chronic Obstructive/therapy
18.
J Med Primatol ; 53(2): e12694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454198

ABSTRACT

BACKGROUND: Animal models of respiratory viral infections are essential for investigating disease pathogenesis and the efficacy of antivirals and vaccine candidates. A major limitation in the research of respiratory diseases in animal models is correlating clinically relevant changes in pulmonary physiology with cellular and molecular mechanistic studies. Few animal models have captured and correlated physiologic changes in lung function and immune response within same experiment, which is critical given the heterogeneous nature of lung disease due to viral infections. In ventilated human patients, pulmonary physiology testing can be used to not only capture oxygenation, ventilation, but also pulmonary mechanics to yield quantitative measures of lung function and scalar tracings of flow-volume and pressure-volume loops. Application of this protocol during mechanical ventilation in non-human (NHP) models would represent a major advance in respiratory viral disease research. METHODS: We have applied and optimized a human pulmonary physiology testing protocol to ventilated pigtail macaques (Macaca nemestrina) at baseline and 5 days after influenza A (IAV) viral inoculation. RESULTS: The NHPs manifested clinical disease with hypothermia and loss of body weight. Declines in lung function were striking with a 66%-81% decline in P/F ratio, a measure of oxygenation reflecting the ratio of partial pressure of oxygen in arterial blood (PaO2 ) to the fraction of inspiratory oxygen concentration (FiO2 ). There was also a 16%-45% decline in lung compliance. CONCLUSION: We describe a new approach to performing pulmonary physiology testing protocol in non-human primates to better capture quantitative correlates of respiratory disease and demonstrate protection by therapeutics and vaccines.


Subject(s)
Lung , Virus Diseases , Humans , Animals , Respiration, Artificial/methods , Oxygen , Primates
19.
Mayo Clin Proc ; 99(4): 578-592, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38456872

ABSTRACT

OBJECTIVE: To determine the epidemiological effect-magnitude and outcomes of patients with cancer vs those without cancer who are hospitalized with acute respiratory failure (ARF). PATIENTS AND METHODS: We reviewed hospitalizations within the National Inpatient Sample (NIS) database between January 1, 2016, and December 31, 2018. Patients were classified based on a diagnosis of solid-organ cancer, hematologic cancer, or no cancer. Noninvasive positive pressure ventilation (NIPPV) failure was defined as patients who initially received NIPPV and had progression to invasive mechanical ventilation. Weighted samples were used to derive population estimates. RESULTS: During the study period, there were an estimated 8,837,209 admissions with ARF in the United States, 8.9% (783,625) of which had solid-organ cancer and 2.0% (176,095) had hematologic cancers. Annually, 319,907 patients with cancer are admitted with ARF, with 27.3% (87,302) requiring invasive mechanical ventilation and 10.0% (31,998) requiring NIPPV. In-hospital mortality was higher in patients with cancer vs those without cancer (24.0% [76,813] vs 12.3% [322,465]; P<.001), and this proprotion persisted when stratified by the highest method of oxygen delivery. Patients with cancer had longer hospital length of stay (7.0 days [3.0 to 12.0 days] vs 5.0 days [3.0 to 10.0 days]; P<.001) and were more likely to have NIPPV failure (14.9% [3,992] vs 12.8% [41,875]). Compared with those with solid-organ cancer, patients with hematologic cancers experienced worse outcomes. The association between underlying cancer diagnosis and outcomes remained consistent when adjusted for age, sex, and comorbidities. CONCLUSION: In the United States, patients with cancer account for over 10% of ARF hospital admissions (959,720 of 8,837,209). They experience an approximately 2-fold higher mortality versus those without cancer. Those with hematologic cancers appear to experience worse outcomes than patients with solid-organ cancers.


Subject(s)
Hematologic Neoplasms , Neoplasms , Respiratory Insufficiency , Humans , United States/epidemiology , Positive-Pressure Respiration/methods , Respiration, Artificial/methods , Neoplasms/complications , Neoplasms/epidemiology , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Respiratory Insufficiency/epidemiology , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
20.
Crit Care ; 28(1): 75, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486268

ABSTRACT

BACKGROUND: Flow starvation is a type of patient-ventilator asynchrony that occurs when gas delivery does not fully meet the patients' ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdiagnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence algorithm for identifying airway pressure deformation during square-flow assisted ventilation and patient-triggered breaths. METHODS: Multicenter, observational study. Adult critically ill patients under mechanical ventilation > 24 h on square-flow assisted ventilation were included. As the reference, 5 intensive care experts classified airway pressure deformation severity. Convolutional neural network and recurrent neural network models were trained and evaluated using accuracy, precision, recall and F1 score. In a subgroup of patients with esophageal pressure measurement (ΔPes), we analyzed the association between the intensity of the inspiratory effort and the airway pressure deformation. RESULTS: 6428 breaths from 28 patients were analyzed, 42% were classified as having normal-mild, 23% moderate, and 34% severe airway pressure deformation. The accuracy of recurrent neural network algorithm and convolutional neural network were 87.9% [87.6-88.3], and 86.8% [86.6-87.4], respectively. Double triggering appeared in 8.8% of breaths, always in the presence of severe airway pressure deformation. The subgroup analysis demonstrated that 74.4% of breaths classified as severe airway pressure deformation had a ΔPes > 10 cmH2O and 37.2% a ΔPes > 15 cmH2O. CONCLUSIONS: Recurrent neural network model appears excellent to identify airway pressure deformation due to flow starvation. It could be used as a real-time, 24-h bedside monitoring tool to minimize unrecognized periods of inappropriate patient-ventilator interaction.


Subject(s)
Deep Learning , Respiration, Artificial , Adult , Humans , Respiration, Artificial/methods , Artificial Intelligence , Lung , Ventilators, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...